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J. Phys. A :  Math., Nucl. Gen., Vol. 6, May 1973. Printed in Great Britain. Q 1973 

Derivation of low temperature expansions for the Ising model 
with spin S > 3 

M F Sykes and D S Gaunt 
Wheatstone Physics Laboratory, King’s College, London, UK 

MS received 2 November 1972 

Abstract. The derivation of low temperature (high field) expansions for the Ising model with 
spin S > 4 is described. 

1. Introduction 

This paper describes methods for the derivation of low temperature (high field) series 
for the Ising model with spin S > i. Such expansions were derived by Sykes (1956) but 
found difficult to interpret by the methods available at that time. The progress made in 
the last decade, both in the interpretation of low temperature series (Baker 1965, 1970, 
Guttmann 1969, Thompson et al 1969, Guttmann et a1 1970) (see also the review by 
Gaunt and Guttmann (1973)), in cooperative phenomena and in methods for deriving 
them (Sykes et al1965) has made it possible to re-examine this problem with profit (Fox 
and Gaunt 1970,1972, Fox and Guttmann 1970,1973, Fox 1972). The derivation of the 
raw data is of necessity a somewhat intricate matter and much of the process is best 
done by computer. We describe in outline how such expansions may be derived by 
direct enumeration ; we also indicate briefly the necessary generalizations of the indirect 
method of partial generating functions. We assume throughout a general familiarity 
with the problem for spin S = $which may be acquired from the reviews of Domb (1960) 
and Fisher (1963,1965,1967) and particularly the specialized papers of Sykes et a1 (1965, 
1973a, b, c). The data derived by the methods described are published and analysed in 
the papers cited above. 

2. The Ising model for general spin 

The Ising model for general spin is defined by the Hamiltonian 

where Sf is the z component of the ith spin (Sf = S, S - 1,. . . , - S ) ,  m is the magnetic 
moment of each spin, H is the applied magnetic field in the z direction and J is the 
interaction energy defined precisely by (2.1). The first summation is taken over all 
interacting pairs of spins, and as we shall only consider the first neighbour model these 
pairs are equivalent to all edges of the lattice. The second summation is taken over all 
spins. 
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For the spin f model the spins can be regarded as having two states: 'up' (S' = t) 
and 'down' (S' = -f). At absolute zero temperature all the spins point up, parallel to 
the applied magnetic field, to form an ordered state, the ground state. The energy of 
this ground state is, for a lattice of N sites and coordination number q, 

- N ( i q J + m H ) .  ( 2 . 2 )  

As the temperature increases spins overturn and if two interacting spins change from 
parallel (either both up or both down) to antiparallel (one up and one down) the energy 
increases by 25, the so-called interspin interaction energy. The quantity 2m is a measure 
of the spin-field interaction energy and is the energy gained per unit field strength when 
a spin changes from parallel (up) to antiparallel (down) to the applied field. 

In configurational terms the general spin model may be thought of as a replacement 
of the two spin states S' = f (up) and S' = -f (down) by (2S+ 1) states with extremes 
of S' = S (fully up) and S' = - S  (fully down). We shall call s" = S the zeroth (ground) 
state and number the 2S  perturbed states 1 to 2s. By virtue of the normalization (Sykes 
1956, Domb and Sykes 1957, Fox 1972) in the Hamiltonian (2.1), the energy of the ground 
state is still given by (2.2). In addition, the interspin and spin-field interaction energies 
may be defined exactly as above, provided up and down are generalized to fully up and 
fully down and it is remembered that only interacting pairs of spins in these extreme 
states can properly be described as parallel or antiparallel. 

3. Generalized linkage rule 

For the spin f model it is readily shown that if in the ground state s spins are perturbed, 
and there are r first neighbour bonds between them, the resultant energy gain is 

(3.1) 

This result is conveniently called the linkage rule since it relates the energy of the 
perturbed state to the number of links between perturbed spins ; it plays a fundamental 
role in the development of series expansions. 

To obtain the appropriate generalization we start with the energy expressed as a 
sum over all the interactions. If two adjacent spins are in the xth and yth perturbed 
states respectively, the contribution of their interaction, taking the zeroth (ground) state 
as datum, is 

2(qs - 2r)J  + 2". 

J 
S2 

--( -Ss-Sy+xy). 

The total energy from spin-spin interactions is therefore the sum over all edges 

(3.2) 

(3.3) 

where N x , Y  is the number of edges joining spins in the xth and yth perturbed states. The 
key to the configurational method lies in regrouping this sum so as to eliminate the 
unperturbed spins from the summation. This is readily done through the relation 

where N ,  is the number of spins in the yth perturbed state, which follows because from 
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every site there radiate q edges and each edge is shared with another site. From (3.3), on 
separating the terms for which x = 0, 

and using (3.4) 

(3.6) 
S 2 E  
- = C qSyN,-  c XYN,,, 
J y > o  y b x > O  

which is the generalized form of the linkage rule for the interspin energy (Sykes 1956). 

4. Low temperature enumerative problem 

The low temperature (or high field) enumerative problem is a straightforward generaliza- 
tion ofthe spin +problem. We suppose a perturbation with N ,  spins in the first perturbed 
state, N ,  in the second, and so on. Using the linkage rule (3.6) and including the con- 
tribution from the spin-field interaction the appropriate Boltzmann factor is 

If we choose variables 

U =exp  -- ( A T )  

p = exp -~ ( kmTHs) 
the expansion for the free energy per spin can be written 

F = -3qJ-mH-kTln A(p, U) 

where 
m 

In 4 = L"(U)P" 
n =  1 

(4.1) 

(4.4) 

(4.5) 

and the coefficient of p" is a polynomial in U whose highest power is unqs. An exception 
occurs when q is odd (honeycomb lattice for example) and the spin is half-integer ; U is 
then replaced by z = U'/,. 

The derivation of successive polynomials is now straightforward. The general case 
is cumbersome and as an illustration we particularize to S = i o n  the triangular lattice. 
The first power of p corresponds to one spin in the first perturbed state or 

L ,  = u9* (4.6) 

The second power of p corresponds either to one spin in the second perturbed state 
(U") or two spins in the first ; in the latter case the two perturbed spins may be separated 
( -  3)u") or adjacent (3u") and 

(4.7) L 2 -  - 3~ l 7  - 23~". 
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The contributions to the third power of p may be grouped : 

N ,  = 3,N2 = N, = 0 (4.8) 

N ,  = N, = 1,N, = 0 6u25 - 7 U Z 7  (4.9) 

2uZ4+9uz5 -3Ouz6+ 193~”  

N I  = N, = 0,N3 = 1 u2 (4.10) 

and 

L,  = 2uZ4+ 15uZ5 - 3 0 ~ ~ ~ + 1 3 $ 4 ~ ~ .  (4.11) 

To obtain the entries in (4.8) it suffices to notice that if all the spins are in the same 
perturbed state the coefficients required are numerically the same as those for the spin 
9 model ; the contributions only differ in the powers of u. Thus for example the contribu- 
tion to p6 if N ,  = 3 ( N ,  = N ,  = 0) follows from (4.8) as 

2u4’ +9u46 - 302’ + 1 9 3 ~ ~ ~  (4.12) 

where successive powers now differ by 4 because each linkage must be reweighted in 
accordance with (3.6). 

If all the perturbed states are not the same the underlying configuration must be 
reweighted to allow for any changes of symmetry. For example the leading term in (4.8) 
corresponds to a triangle of interacting spins. If all three change from the first to the 
second perturbed state the symmetry is unaffected; if only one changes it may be chosen 
in three ways and the contribution becomes 6u3 ’p4. 

Proceeding systematically a useful number of terms can be derived if the underlying 
configurational information for the spin 9 model is available. The first seven polynomials 
for S = 1 and S = 3 on the triangular and face centred cubic lattices are given by Fox 
and Gaunt (1972). Polynomials for loose packed lattices may be derived similarly but 
it is usually better to exploit the sublattice division as outlined in the next section. 

5. Method of partial generating functions 

For the spin 9 model on a loose packed lattice the method of partial generating functions 
(Sykes et al 1965, 1973a, b, c) can be used with advantage. This exploits the fact that 
such lattices divide into two equivalent sublattices A and B so that no spin is connected 
to any other spin on the same sublattice. By providing the exact solution when the 
number of perturbed spins on one sublattice (by convention B) is restricted to some 
value i the first (21 + 1) low temperature (or high field) polynomials are obtained. The 
method is described in detail in the papers cited. It requires a knowledge of the powerful 
technique of generating functions (described for example by Feller (1950) and Fisher 
(1 962)). 

by taking as an example the simple quad- 
ratic lattice of 2N sites with 2 = 2; the arguments are quite general. When S = $ 
exploitation of the linkage rule (3.1) requires essentially a knowledge of the number of 
first neighbour bonds between perturbed spins. The two spins on the B sublattice cast 
‘shadows’ on the A sublattice ; these shadows can affect either 8,7 or 6 spins as illustrated 
schematically in the figure. Any site on the A sublattice which is perturbed will yield 

We outline the modifications when S > 



Ising model with spin S > 3 647 

( C  1 

Figure 1. Simple quadratic lattice: the three types of shadow pattern cast on A spins by 
two B spins. 0 A spin, 0 B spin, --- possible bonds between perturbed spins. 

one bond for each shadow in which it lies. Denoting perturbed A spins by x and per- 
turbed B spins by y the appropriate generating function is 

+ N ( N  - 9)y2( 1 + bx)8( 1 + x)- + 2Ny2( 1 + bx)6( 1 + b2x)( 1 + x)- 7 

+ 2 ~ y 2 ( 1 +  bx)4(1 + b2X)2(i + x)-6 (5.1) 

where the power of b in the expanded function corresponds to the number of bonds 
between perturbed spins in the resultant configuration. 

To apply the technique when S = 1 we introduce x and X to denote perturbed spins 
on the A sublattice in the first and second state respectively, and y and Yon the B sub- 
lattice. In accordance with the linkage rule (3.6) (where x and y should not be confused 
with the notation of this section) bonds between x and y are to yield b, x and Y or X and 
y are to yield b2, and X and Yare to yield b4. In all the shadow patterns illustrated in 
the figure there are three ways of distributing two perturbed states on the B sublattice. 
The required generating function is now 

) N ( N  - 9)y2( 1 + bx + b2X)8( 1 + x + x)- 
+N(N--9)yY(l + b ~ + b ' X ) ~ ( l  +b2x+b4X)4(l + X + X ) - ~  

+ i N ( N  - 9)Y2( 1 + b2x + b4X)'( 1 + x + X)- 

+ 2 ~ y 2 ( 1 +  bx + bzx)6(i + b2x + b 4 ~ ) ( 1 +  x + x)- 7 

+ 4NyY(1+ bx + b2X)3(1 + b2x + b4Xy(I + b3x + b6X)(l + x + X)-7 

+ 2NY2(1 + b2x + b4Xy(1 + b4x + b8X)(l + x  + X)-7 

+ 2Ny2( 1 + bx + b2X)4( 1 + b2x + b4X)2( 1 + x + X)- 

+ 4NyY( 1 + bx + b2X)2( 1 + b2x + b4X)'( 1 + b3x + b6X)'( 1 + x + X)-6 

+2NY2(1 +b2x+b4X)4(l +!~~x+b 'X)~( l  + x + X ) - ~ .  (5.2) 
The generalization is conceptually simple and the derivation of a useful number of 

partial generating functions straightforward although tedious. The modification to 
S > 1 is obvious but the expressions become progressively heavier. The main practical 
problem lies in the performance of the manipulations required to obtain the high field 
polynomials explicitly ; nevertheless the method has proved more productive than 
direct enumeration. The technique has been developed by Fox (1972) and the first ten 
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polynomials for the spin 1 model on the simple quadratic, simple cubic and body 
centred cubic lattices and the first twelve polynomials on the honeycomb and diamond 
lattices are given by Fox and Gaunt (1972). 
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